MX Foundation 4
hdlc_buffer_threshold.cs
/************************************************************************************************
//
// File:
// hdlc_buffer_threshold.cs
//
// Copyright (c) MAX Technologies Inc. 1988-2019, All Rights Reserved.
// CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH IS THE
// PROPERTY OF MAX TECHNOLOGIES INC.
//
// This example illustrates how to manage buffer thresholds with asynchronous events.
// The demo will transmit and record the messages using asynchronous
// events.
//
// Hardware Requirements:
// - MAXT FlexMulti or 500 series carrier with IPM-MULTI
// - loopback between TX0 and RX0 and TX4 and RX7 Multi channels.
//
**************************************************************************************************/
#define LOOPBACK
//#define LOCAL
using System;
using static MAXT.MXFoundation.mxf;
using System.Runtime.InteropServices;
using System.Text;
namespace hdlc_example
{
class hdlc_buffer_threshold
{
const int DURATION_ms = 5000;
const int TXALMOSTFULL = 7;
const int TXALMOSTEMPTY = 3;
const int RXALMOSTFULL = 5;
const int RXALMOSTEMPTY = 2;
private static UInt32 TXAsyncEvents = 0;
private static UInt64 time = 0;
static void Main(string[] args)
{
UInt32 rc;
UInt64 server;
UInt64 rxChannel = 0, txChannel = 0;
UInt64 asyncEvent = 0;
UInt64 rxBuffer = 0, txBuffer = 0;
IntPtr rxHostBuffer = IntPtr.Zero;
IntPtr txHostBuffer = IntPtr.Zero;
MXF_ASYNCEVENT_CONDITION[] RXasyncEventInfo = new MXF_ASYNCEVENT_CONDITION[1], TXasyncEventInfo = new MXF_ASYNCEVENT_CONDITION[1];
uint txBufferSize, rxBufferSize;
MXF_SYSTEM_INIT_ATTRIBUTE_UINT64_HANDLER _initHandler = initHandler;
MXF_ASYNCEVENT_HANDLER _asyncEventHandler = asyncEventHandler;
// Connects to services and initialize environment
#if LOCAL
rc = mxfServerConnect("0.0.0.0", "", "", Convert.ToUInt64(false), out server);
#else
rc = mxfServerConnect("192.168.0.1", "admin", "admin", Convert.ToUInt64(false), out server);
#endif
//Configuration of the Multi port in HDLC
if (rc == MAXT_SUCCESS)
// Initializes MX Foundation library
if (rc == MAXT_SUCCESS)
{
Console.WriteLine("Starting ...");
rc = mxfSystemInit(server);
}
// Gets handle of first HDLC RX channel
if (rc == MAXT_SUCCESS)
rc = mxfChannelGet(server, MXF_CLASS_HDLC, MXF_SCLASS_RX_CHANNEL, MXF_MODULE_MULTI_EH, 0, out rxChannel);
// Gets handle of first HDLC TX channel
if (rc == MAXT_SUCCESS)
rc = mxfChannelGet(server, MXF_CLASS_HDLC, MXF_SCLASS_TX_CHANNEL, MXF_MODULE_MULTI_EH, 0, out txChannel);
// Sets frame size and internal clock frequency
if (rc == MAXT_SUCCESS)
rc = mxfAttributeUint64Set(rxChannel, KMXF_HDLC_FRAME_SIZE_ENABLE, VMXF_ENABLE);
if (rc == MAXT_SUCCESS)
rc = mxfAttributeUint64Set(txChannel, KMXF_HDLC_FRAME_SIZE_ENABLE, VMXF_ENABLE);
if (rc == MAXT_SUCCESS)
rc = mxfAttributeUint64Set(txChannel, KMXF_HDLC_INTERNAL_CLOCK_FREQ, 100000);
// Enables HDLC
if (!rc)
rc = mxfHDLCChannelEnable(txChannel, VMXF_HDLC_CLOCK_SOURCE_INTERNAL);
if (!rc)
rc = mxfHDLCChannelEnable(rxChannel, VMXF_HDLC_CLOCK_SOURCE_EXTERNAL);
// Enables loopback
#if LOOPBACK
if (rc == MAXT_SUCCESS)
rc = mxfAttributeUint64Set(rxChannel, KMXF_HDLC_TX_RX_TEST_LB, VMXF_ENABLE);
#endif
// Allocates buffer for tx data
if (rc == MAXT_SUCCESS)
{
txBufferSize = (uint)TXALMOSTFULL * (uint)(Marshal.SizeOf(typeof(MXF_HDLC_DATAREC)));
// Allocates TX Aperiodic static buffer for HIGH priority queue
rc = mxfTxAperiodicBufferAlloc(txChannel, MXF_TXAPERIODIC_PRIORITY_HIGH, txBufferSize, out txBuffer, IntPtr.Zero);
// Host buffer allocation
if (rc == MAXT_SUCCESS)
{
try
{
txHostBuffer = Marshal.AllocHGlobal((int)txBufferSize);
}
catch (OutOfMemoryException)
{
rc = MAXT_ERROR_MEM;
}
}
}
// Allocates buffer for RX data
if (rc == MAXT_SUCCESS)
{
rxBufferSize = (uint)RXALMOSTFULL * (uint)(Marshal.SizeOf(typeof(MXF_HDLC_DATAREC)));
// Allocates RX acquisition static buffer
rc = mxfRxAcqBufferAlloc(rxChannel, rxBufferSize, out rxBuffer, IntPtr.Zero);
// Host buffer allocation
if (rc == MAXT_SUCCESS)
{
try
{
rxHostBuffer = Marshal.AllocHGlobal((int)rxBufferSize);
}
catch (OutOfMemoryException)
{
rc = MAXT_ERROR_MEM;
}
}
}
// Sets timebase to RTC nsec
if (rc == MAXT_SUCCESS)
rc = mxfSystemTimeBaseSet(server, MXF_TIMEBASE_DEVICE_NSEC);
// Sets the event handler
if (rc == MAXT_SUCCESS)
rc = mxfAsyncEventHandlerInit(server, asyncEventHandler, txHostBuffer, out asyncEvent);
// Sets the RX async event condition
if (rc == MAXT_SUCCESS)
{
RXasyncEventInfo[0].condID = MXF_ASYNCEVENT_COND_RXACQ_BUFFER_THRESHOLD;
RXasyncEventInfo[0].condition.rxAcqBufferThreshold.buffer = rxBuffer;
RXasyncEventInfo[0].condition.rxAcqBufferThreshold.almostFull = RXALMOSTFULL;
RXasyncEventInfo[0].condition.rxAcqBufferThreshold.almostEmpty = RXALMOSTEMPTY;
rc = mxfAsyncEventConditionsSet(asyncEvent, Convert.ToUInt64(true), Convert.ToUInt64(RXasyncEventInfo.Length), RXasyncEventInfo);
}
// Sets acquisition mode
if (rc == MAXT_SUCCESS)
rc = mxfRxAcqModeSet(rxBuffer, MXF_RXACQ_MODE_LINEAR);
// Starts acquisition
if (rc == MAXT_SUCCESS)
rc = mxfRxAcqStart(rxBuffer, MXF_RXACQ_FLAG_DEFAULT, 0, 0);
if (rc == MAXT_SUCCESS)
Console.WriteLine("Acquisition started");
// Sets the TX async event condition
if (rc == MAXT_SUCCESS)
{
TXasyncEventInfo[0].condID = MXF_ASYNCEVENT_COND_TXAPERIODIC_BUFFER_THRESHOLD;
TXasyncEventInfo[0].condition.txAperiodicBufferThreshold.buffer = txBuffer;
TXasyncEventInfo[0].condition.txAperiodicBufferThreshold.almostFull = TXALMOSTFULL;
TXasyncEventInfo[0].condition.txAperiodicBufferThreshold.almostEmpty = TXALMOSTEMPTY;
rc = mxfAsyncEventConditionsSet(asyncEvent, Convert.ToUInt64(true), Convert.ToUInt64(TXasyncEventInfo.Length), TXasyncEventInfo);
}
// Waits for transmission and reading to occur
if (rc == MAXT_SUCCESS)
mxfSleep(DURATION_ms);
// Stops acquisition
if (rc == MAXT_SUCCESS)
rc = mxfRxAcqStop(rxBuffer);
// Disable conditions
if (rc == MAXT_SUCCESS)
rc = mxfAsyncEventConditionsSet(asyncEvent, Convert.ToUInt64(false), 1, RXasyncEventInfo);
if (rc == MAXT_SUCCESS)
rc = mxfAsyncEventConditionsSet(asyncEvent, Convert.ToUInt64(false), 1, TXasyncEventInfo);
// Terminates async event handler
if (rc == MAXT_SUCCESS)
// Catches any previous failing function
if (rc != MAXT_SUCCESS)
{
StringBuilder buffer = new StringBuilder(256);
if (mxfSystemErrorStringGet(server, rc, 256, buffer) != MAXT_SUCCESS)
buffer.Append(string.Format("ERROR # 0x{0:x8}", rc));
Console.WriteLine(buffer);
}
// Disables HDLC
if (txChannel)
if (rxChannel)
// Frees device and host buffers
if (txBuffer != 0)
if (rxBuffer != 0)
mxfRxAcqBufferFree(rxBuffer);
// Terminates
if (txHostBuffer != IntPtr.Zero)
Marshal.FreeHGlobal(txHostBuffer);
if (rxHostBuffer != IntPtr.Zero)
Marshal.FreeHGlobal(rxHostBuffer);
Console.WriteLine();
Console.WriteLine("Press enter to terminate");
Console.Read();
return;
}
//****************************************************************************************************************
// Asynchronous Event Handler
//****************************************************************************************************************
private static UInt32 asyncEventHandler(UInt64 asyncEvent, IntPtr param) //void* param)
{
UInt64 maxCount = 64, pendingCount;
UInt64 i;
UInt32 rc;
// Gets the list of pending events to process
rc = mxfAsyncEventPendingGet(asyncEvent, maxCount, out pendingCount, pendingList);
for (i = 0; (rc == MAXT_SUCCESS) && (i < pendingCount); i++)
{
switch (pendingList[i].condID)
{
case MXF_ASYNCEVENT_COND_TXAPERIODIC_BUFFER_THRESHOLD:
// An almost empty condition was detected...
writeMsgs(pendingList[i].condition.txAperiodicBufferThreshold.buffer, param);
break;
case MXF_ASYNCEVENT_COND_RXACQ_BUFFER_THRESHOLD:
// An almost full condition was detected...
readAcquisition(pendingList[i].condition.rxAcqBufferThreshold.buffer, param);
break;
default:
Console.Write("Unknown condID {0}", pendingList[i].condID);
break;
}
}
return rc;
}
//****************************************************************************************************************
// Aperiodic Transmission
//****************************************************************************************************************
private static UInt32 writeMsgs(UInt64 buffer, IntPtr txHostBuffer)
{
UInt32 rc = 0;
UInt32 i;
IntPtr recPtr = txHostBuffer;
UInt64 word;
{
data = new UInt16[2048]
};
// Gets initial timer value
if (TXAsyncEvents == 0)
{
UInt64 channel;
UInt64 device = 0;
rc = mxfTxAperiodicBufferInfoGet(buffer, out channel, IntPtr.Zero);
if (rc == MAXT_SUCCESS)
rc = mxfChannelInfoGet(channel, out device, IntPtr.Zero);
if (rc == MAXT_SUCCESS)
rc = mxfDeviceTimerGet(device, out time);
}
// Refills the FIFO
for (i = 0; (rc == MAXT_SUCCESS) && (i < TXALMOSTFULL); i++)
{
time += 100000000;
rec.timeTag = time;
rec.control = 0;
rec.repeatCount = 1;
rec.dataSize = 64;
rec.reserved = 0;
for (word = 0; word < rec.dataSize / 2; word++)
{
rec.data[word] = (UInt16)(0x0101 * word);
}
Marshal.StructureToPtr(rec, recPtr, false);
rc = mxfHDLCNextDataRecordPtrGet(recPtr, out recPtr);
}
if (rc == MAXT_SUCCESS)
{
Console.WriteLine("Transmitting ...");
// Transmits strings on absolute record time
rc = mxfHDLCTxAperiodicWrite(buffer, MXF_TXAPERIODIC_FLAG_USE_RECORD_ABSOLUTE_TIME, 0, TXALMOSTFULL, txHostBuffer);
}
if (rc != MAXT_SUCCESS)
Console.WriteLine("Periodic Update failed; rc=0x{0:x8}", rc);
else
Console.WriteLine("Async Event {0:D} - Writing {1:D} records", ++TXAsyncEvents, i);
return rc;
}
/***************************************************************************************************************/
// readAcquisition
/***************************************************************************************************************/
private static UInt32 readAcquisition(UInt64 rxBuffer, IntPtr rxHostBuffer)
{
UInt64 status, msgsCount, bytesCount;
UInt32 rc;
uint bufferSize = (uint)RXALMOSTFULL * (uint)Marshal.SizeOf(typeof(MXF_HDLC_DATAREC));
// Reads and display records
rc = mxfHDLCRxAcqRead(rxBuffer, 0, bufferSize, out status, out msgsCount, out bytesCount, rxHostBuffer);
if (rc == MAXT_SUCCESS)
Console.WriteLine("String received count = {0} ", msgsCount);
if (rc == MAXT_SUCCESS)
{
// Displays received strings
DisplayDataArray(msgsCount, rxHostBuffer);
}
if (rc != MAXT_SUCCESS)
Console.WriteLine("Acquisition read failed; rc=0x{0:x8}", rc);
return rc;
}
private static void DisplayDataArray(UInt64 recNum, IntPtr rec)
{
UInt64 iRec,
iData;
IntPtr recPtr = rec;
UInt32 rc = MAXT_SUCCESS;
{
data = new UInt16[2048]
};
Console.WriteLine();
for (iRec = 0; (iRec < recNum) && (rc == MAXT_SUCCESS); iRec++)
{
p = (MXF_HDLC_DATAREC)Marshal.PtrToStructure(recPtr, typeof(MXF_HDLC_DATAREC));
Console.Write("{0:D3} {1:D10} 0x{2:x8} {3:D3} ", iRec, p.timeTag, p.control, p.dataSize); //%03llu %010llu 0x%08x %03u
for (iData = 0; iData < p.dataSize / 2; iData++)
{
Console.Write("{0:x4} ", p.data[iData]);
if ((((iData + 1) % 8) == 0) && (iData + 1 < p.dataSize / 2))
Console.Write("\n ");
}
Console.WriteLine();
rc = mxfHDLCNextDataRecordPtrGet(recPtr, out recPtr);
}
}
private static UInt32 initHandler(UInt64 server, UInt64 deviceIndex, UInt64 moduleIndex, UInt64 channelIndex, UInt64 attrib, ref UInt64 value)
{
UInt64 device;
MXF_DEVICE_INFO deviceInfo = new MXF_DEVICE_INFO();
UInt32 rc;
server = server;
deviceIndex = deviceIndex;
if (attrib == KMXF_CHANNEL_CLASS)
{
rc = mxfSystemDeviceGet(server, deviceIndex, out device);
if (rc == MAXT_SUCCESS)
rc = mxfDeviceInfoGet(device, out deviceInfo);
if ((rc == MAXT_SUCCESS) && ((deviceInfo.modules[moduleIndex].type == MXF_MODULE_MULTI_EH) || (deviceInfo.modules[moduleIndex].type == MXF_MODULE_MULTI)))
{
// Sets IPM-MULTI-EH first TX and RX channel to HDLC
if ((channelIndex == 0) || (channelIndex == deviceInfo.modules[moduleIndex].txCount))
{
value = MXF_CLASS_HDLC;
return Convert.ToUInt32(true);
}
else if ((channelIndex == 4) || (channelIndex == deviceInfo.modules[moduleIndex].txCount + 4))
{
value = MXF_CLASS_CLOCK;
return Convert.ToUInt32(true);
}
}
}
return Convert.ToUInt32(false);
}
}
}
Updated 10/23/2023